理解導(dǎo)數(shù)的概念及其幾何意義,了解左導(dǎo)數(shù)與右導(dǎo)數(shù)的定義,理解函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系,會(huì)用定義求函數(shù)在一點(diǎn)處的導(dǎo)數(shù)。
會(huì)求曲線上一點(diǎn)處的切線方程與法線方程
熟記導(dǎo)數(shù)的基本公式,會(huì)運(yùn)用函數(shù)的四則運(yùn)算求導(dǎo)法則,復(fù)合函數(shù)求導(dǎo)法則和反函數(shù)求導(dǎo)法則求導(dǎo)數(shù)。會(huì)求分段函數(shù)的導(dǎo)數(shù)。
會(huì)求隱函數(shù)的導(dǎo)數(shù)。掌握對數(shù)求導(dǎo)法與參數(shù)方程求導(dǎo)法。
理解高階導(dǎo)數(shù)的概念,會(huì)求一些簡單的函數(shù)的n階導(dǎo)數(shù)。
理解函數(shù)微分的概念,掌握微分運(yùn)算法則與一階微分形式不變性,理解可微與可導(dǎo)的關(guān)系,會(huì)求函數(shù)的一階微分。
中值定理及導(dǎo)數(shù)的應(yīng)用
理解羅爾(Rolle)中值定理、拉格朗日(Lagrange)中值定理及它們的幾何意義,理解柯西(Cauchy)中值定理、泰勒(Taylor)中值定理。會(huì)用羅爾中值定理證明方程根的存在性。會(huì)用拉格朗日中值定理證明一些簡單的不等式。
掌握洛必達(dá)(L’Hospital)法則,會(huì)用洛必達(dá)法則求型未定式的極限。
會(huì)利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間,會(huì)利用函數(shù)的單調(diào)性證明一些簡單的不等式。
理解函數(shù)極值的概念,會(huì)求函數(shù)的極值和最值,會(huì)解決一些簡單的應(yīng)用問題。
會(huì)判定曲線的凹凸性,會(huì)求曲線的拐點(diǎn)。
會(huì)求曲線的漸近線(水平漸近線、垂直漸近線和斜漸近線)。
會(huì)描繪一些簡單的函數(shù)的圖形。

浙江專升本聲明
(一)由于考試政策等各方面情況的不斷調(diào)整與變化,本網(wǎng)站所提供的考試信息僅供參考,請以權(quán)威部門公布的正式信息為準(zhǔn)。
(二)本網(wǎng)站在文章內(nèi)容來源出處標(biāo)注為其他平臺的稿件均為轉(zhuǎn)載稿,免費(fèi)轉(zhuǎn)載出于非商業(yè)性學(xué)習(xí)目的,版權(quán)歸原作者所有。如您對內(nèi)容、版權(quán)等問題存在異議請于我們聯(lián)系,我們會(huì)及時(shí)處理。
文章來源于網(wǎng)絡(luò),如有侵權(quán),請聯(lián)系刪除